Anley, J.L. Synthesis and degradation of termination and premature-termination fragments
Anley, J.L. Synthesis and degradation of termination and premature-termination fragments of beta-galactosidase in vitro and in vivo. J. Mol. Biol. 1978, 125, 40732. three. Kurland, C.G.; Ehrenberg, M. Constraints around the accuracy of messenger RNA movement. Q. Rev. Biophys. 1985, 18, 42350. four. Heurgue-Hamard, V.; Karimi, R.; Mora, L.; MacDougall, J.; Leboeuf, C.; Grentzmann, G.; Ehrenberg, M.; Buckingham, R.H. Ribosome release element RF4 and termination aspect RF3 are involved in dissociation of peptidyl-tRNA from the ribosome. EMBO J. 1998, 17, 80816. 5. Karimi, R.; Pavlov, M.Y.; Heurgue-Hamard, V.; Buckingham, R.H.; Ehrenberg, M. Initiation things IF1 and IF2 synergistically eliminate peptidyl-tRNAs with short polypeptides from the P-site of translating Escherichia coli ribosomes. J. Mol. Biol. 1998, 281, 24152. six. Menninger, J.R. The accumulation as peptidyl-transfer RNA of isoaccepting transfer RNA households in Escherichia coli with temperature-sensitive peptidyl-transfer RNA hydrolase. J. Biol. Chem. 1978, 253, 6808813. 7. Cruz-Vera, L.R.; Hernandez-Ramon, E.; Perez-Zamorano, B.; Guarneros, G. The rate of peptidyl-tRNA dissociation in the ribosome in the course of minigene expression XIAP custom synthesis depends on the nature with the final decoding interaction. J. Biol. Chem. 2003, 278, 260656070. 8. Hernandez-Sanchez, J.; Valadez, J.G.; Herrera, J.V.; Ontiveros, C.; Guarneros, G. Lambda bar minigene-mediated inhibition of protein synthesis includes accumulation of peptidyl-tRNA and starvation for tRNA. EMBO J. 1998, 17, 3758765. 9. Tenson, T.; Herrera, J.V.; Kloss, P.; Guarneros, G.; Mankin, A.S. Inhibition of translation and cell development by minigene expression. J. Bacteriol. 1999, 181, 1617622. ten. Rosas-Sandoval, G.; Ambrogelly, A.; Rinehart, J.; Wei, D.; Cruz-Vera, L.R.; Graham, D.E.; Stetter, K.O.; Guarneros, G.; Soll, D. Orthologs of a novel archaeal and with the bacterial peptidyl-tRNA hydrolase are nonessential in yeast. Proc. Natl. Acad. Sci. USA 2002, 99, 167076712. 11. Gross, M.; Crow, P.; White, J. The web page of hydrolysis by rabbit reticulocyte peptidyl-tRNA hydrolase would be the 3′-AMP terminus of susceptible tRNA substrates. J. Biol. Chem. 1992, 267, 2080086. 12. Schulman, L.H.; Pelka, H. The structural basis for the resistance of Escherichia coli formylmethionyl transfer ribonucleic acid to cleavage by Escherichia coli peptidyl transfer ribonucleic acid hydrolase. J. Biol. Chem. 1975, 250, 54247. 1.Int. J. Mol. Sci. 2013,13. Dutka, S.; Meinnel, T.; Lazennec, C.; Mechulam, Y.; Blanquet, S. Function in the 1-72 base pair in tRNAs for the activity of Escherichia coli peptidyl-tRNA hydrolase. Nucleic Acids Res. 1993, 21, 4025030. 14. Fromant, M.; Schmitt, E.; Mechulam, Y.; Lazennec, C.; Plateau, P.; Blanquet, S. Crystal structure at 1.8 resolution and identification of active internet site residues of Sulfolobus solfataricus peptidyl-tRNA hydrolase. Biochemistry 2005, 44, 4294301. 15. Pulavarti, S.V.; Jain, A.; Pathak, P.P.; Mahmood, A.; Arora, A. Solution structure and dynamics of peptidyl-tRNA hydrolase from Mycobacterium tuberculosis H37Rv. J. Mol. Biol. 2008, 378, 16577. 16. PIM2 custom synthesis Selvaraj, M.; Roy, S.; Singh, N.S.; Sangeetha, R.; Varshney, U.; Vijayan, M. Structural plasticity and enzyme action: Crystal structures of Mycobacterium tuberculosis peptidyl-tRNA hydrolase. J. Mol. Biol. 2007, 372, 18693. 17. Schmitt, E.; Fromant, M.; Plateau, P.; Mechulam, Y.; Blanquet, S. Crystallization and preliminary X-ray analysis of Escherichia coli peptidyl-tRNA hydrolase. Proteins 1997, 28, 13536.